[1] 陈杨,杜亚丹, 王勇, 刘普旭, 李立博, 李晋平. utsa-280的氨改性以及c2h4/c2h6分离性能研究. 化学学报. 2020;78:534-9.
[2] zhong d, zhang l, zhao q, cheng d, deng w, liu b, et al. concentrating and activating carbon dioxide over aucu aerogel grain boundaries. the journal of chemical physics. 2020;152:204703.
[3] zhao r, wang h, gao n, liu r, guo t, wu j, et al. hollow hemispherical carbon microparticles with mo2c nanoparticles synthesized by precursor design: effective noble metal-free catalysts for dehydrogenation. small methods. 2020;4:1900597.
[4] yuan h, wei s, tang b, ma z, li j, kundu m, et al. self-supported 3 d ultrathin cobalt-nickel-boron nanoflakes as an efficient electrocatalyst for the oxygen evolution reaction. chemsuschem. 2020;13:3662-70.
[5] yuan h, wang s, ma z, kundu m, tang b, li j, et al. oxygen vacancies engineered self-supported b doped co3o4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride. chem eng j. 2020:126474.
[6] yang l, wang y, chen y, yang j, wang x, li l, et al. microporous metal-organic framework with specific functional sites for efficient removal of ethane from ethane/ethylene mixtures. chem eng j. 2020;387:124137.
[7] yang j, bai h, shang h, wang j, li j, deng s. experimental and simulation study on efficient ch4/n2 separation by pressure swing adsorption on silicalite-1 pellets. chem eng j. 2020;388:124222.
[8] wang y, li l, zhang x, li j, wang j, li n. polyvinylamine/amorphous metakaolin mixed-matrix composite membranes with facilitated transport carriers for highly efficient co2/n2 separation. j membr sci. 2020;599:117828.
[9] wang m, wu y, li n, zhao f, zhao q, li j, et al. synergistic assembly of a cos@ nife/ni foam heterostructure electrocatalyst for efficient water oxidation catalysis at large current densities. chemistry–an asian journal. 2020;15:1484-92.
[10] wang l, zhang f, wang c, li y, yang j, li l, et al. ethylenediamine-functionalized metal organic frameworks mil-100 (cr) for efficient co2/n2o separation. sep purif technol. 2020;235:116219.
[11] wang l, li y, wang y, yang j, li l, li j. research on co2-n2o separation using flexible metal organic frameworks. sep purif technol. 2020.
[12] wang j, wang s, li j. s-doped three-dimensional graphene (s-3dg): a metal-free electrocatalyst for the electrochemical synthesis of ammonia under ambient conditions. dalton transactions. 2020;49:2258-63.
[13] shi w, shang y, ahmed mm, zhao r, li s, du j, et al. a facile controllable self-assembly of 3d elliptical zno microspheres from 1d nanowires for effective detection of acetone. mater lett. 2020;270:127706.
[14] shi q, wang j, shang h, bai h, zhao y, yang j, et al. effective ch4 enrichment from n2 by sim-1 via a strong adsorption potential sod cage. sep purif technol. 2020;230:115850.
[15] shang y, shi w, zhao r, ahmed mm, li j, du j. simple self-assembly of 3d laminated cuo/sno2 hybrid for the detection of triethylamine. chin chem lett. 2020.
[16] nie x, guo t, du q, liu r, liu l, zhao r, et al. mesoporous carbon nanotablets coupled with mo2c nanoparticles: combining morphology and structure to realize high activity for efficient hydrogen evolution. chemistryselect. 2020;5:5974-80.
[17] liu r, du q, zhao r, nie x, liu l, li j, et al. ultrafine mo2c nanoparticles confined in 2d meshlike carbon nanolayers for effective hydrogen evolution. chemcatchem. 2020.
[18] li w, wang s, li j. effect of rare earth elements (la, y, pr) in multi-element composite perovskite oxide supports for ammonia synthesis. journal of rare earths. 2020.
[19] li d, li t, hao g, guo w, chen s, liu g, et al. iro2 nanoparticle-decorated single-layer nife ldhs nanosheets with oxygen vacancies for the oxygen evolution reaction. chem eng j. 2020:125738.
[20] li d, hao g, guo w, liu g, li j, zhao q. highly efficient ni nanotube arrays and ni nanotube arrays coupled with nife layered-double-hydroxide electrocatalysts for overall water splitting. j power sources. 2020;448:227434.
[21] lei j, wang s, li j. mesoporous co3o4 derived from co-mofs with different morphologies and ligands for toluene catalytic oxidation. chem eng sci. 2020:115654.
[22] lei j, wang s, li j. mesoporous co3o4 derived from facile calcination of octahedral co-mofs for toluene catalytic oxidation. ind eng chem res. 2020;59:5583-90.
[23] lei j, niu r, li j, wang s. the pd/na-zsm-5 catalysts with different si/al ratios on low concentration methane oxidation. solid state sciences. 2020;101:106097.
[24] lan t, li l, chen y, wang x, yang j, li j. opportunities and critical factors of porous metal-organic frameworks for the industrial separation of light olefins. materials chemistry frontiers. 2020:1954-84.
[25] he c, wang y, chen y, wang x, yang j, li l, et al. modification of the pore environment in uio-type metal-organic framework toward boosting the separation of propane/propylene. chem eng j. 2020:126428.
[26] he c, wang y, chen y, wang x, yang j, li l, et al. direct functionalization of the open metal sites in rare earth-based metal–organic frameworks used for the efficient separation of ethylene. ind eng chem res. 2020;59:6123-9.
[27] guo w, li d, zhong d, chen s, hao g, liu g, et al. loading feooh on ni(oh)2 hollow nanorods to obtain a three-dimensional sandwich catalyst with strong electron interactions for efficient oxygen-evolution reaction. nanoscale. 2020;12:983-90.
[28] guang liu, rui yao, fei zhao, qiang zhao, jinping li. amorphous iron-nickel phosphide nanocone arrays as efficient bifunctional electrodes for overall water splitting. green energy & environment. 2020.
[29] guang liu, muheng wang, yun wu, na li, fei zhao, qiang zhao, et al. 3d porous network heterostructure nice@nife electrocatalyst for efficient oxygen evolution reaction at large current densities. appl catal b: environ. 2020;260:118199.
[30] gu x, zheng s, huang x, yuan h, li j, kundu m, et al. hybrid ni3s2–mos2 nanowire arrays as a ph-universal catalyst for accelerating the hydrogen evolution reaction. chem commun. 2020;56:2471-4.
[31] chen y, du y, liu p, yang j, li l, li j. removal of ammonia emissions via reversible structural transformation in m (bdc)(m= cu, zn, cd) metal–organic frameworks. environ sci technol. 2020;54:3636-42.
[32] ahmed m, zhao r, hayytov b, shang y, li j, du j. morphology evolution of zno by controlling solvent and electrochemical sensing of hexagonal nanotablets toward amines. chin chem lett. 2020.
[33] 尚华,白洪灏,刘佳奇,杨江峰,李晋平. ch4-n2在自支撑颗粒型silicalite-1上的吸附分离及psa模拟. 化工学报. 2020;71:2088-98.